## What are the characteristics of a rational function?

A rational function is defined as the quotient of polynomials in which the denominator has a degree of at least 1 . In other words, there must be a variable in the denominator. The general form of a rational function is p(x)q(x) , where p(x) and q(x) are polynomials and q(x)≠0 .

## How do you identify rational expressions?

Rational expressions are fractions containing polynomials. They can be simplified much like numeric fractions. To simplify a rational expression, first determine common factors of the numerator and denominator, and then remove them by rewriting them as expressions equal to 1.

## What is rational expression?

A rational expression is simply a quotient of two polynomials. Or in other words, it is a fraction whose numerator and denominator are polynomials.

## What is the most distinct characteristic of a rational function?

One of the main characteristics of rational functions is the existence of asymptotes. An asymptote is a straight line to which the graph of the function gets arbitrarily close. Typically one can classify the asymptotes into two types.

## What is rational function in your own words?

A rational function is any function which can be written as the ratio of two polynomial functions, where the polynomial in the denominator is not equal to zero. The domain of f(x)=P(x)Q(x) f ( x ) = P ( x ) Q ( x ) is the set of all points x for which the denominator Q(x) is not zero.

## How do you write a rational expression?

To write a rational expression in lowest terms, we must first find all common factors (constants, variables, or polynomials) or the numerator and the denominator. Thus, we must factor the numerator and the denominator. Once the numerator and the denominator have been factored, cross out any common factors.

## What are holes in rational functions?

HoleA hole exists on the graph of a rational function at any input value that causes both the numerator and denominator of the function to be equal to zero. They occur when factors can be algebraically canceled from rational functions. Removable discontinuityRemovable discontinuities are also known as holes.

## How do you determine end behavior?

The end behavior of a polynomial function is the behavior of the graph of f(x) as x approaches positive infinity or negative infinity. The degree and the leading coefficient of a polynomial function determine the end behavior of the graph.

## What is the horizontal asymptote of a rational function?

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator. Degree of numerator is less than degree of denominator: horizontal asymptote at y = 0. Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote.

## How do you tell the difference between a hole and an asymptote?

Holes occur when factors from the numerator and the denominator cancel. When a factor in the denominator does not cancel, it produces a vertical asymptote.